Graph Signal Processing (GSP)
(or how I started seeing graphs everywhere)

Antonio Ortega

Signal and Image Processing Institute
Department of Electrical Engineering
University of Southern California
Los Angeles, California

Apr 14, 2017
Outline

Graphs Everywhere

GSP basics

Contributions

Discussion
Graphs everywhere ...

Graphs provide a flexible model to represent many datasets:

- Examples in Euclidean domains

(a) Computer graphics
(b) Wireless sensor networks
(c) image - graphs
... and then some

Examples in non-Euclidean settings

(a) Social Networks \(^3\), (b) Finite State Machines (FSM)
Graph Signal Processing

- Given a graph (fixed or learned from data)

- and given signals on the graph (set of scalars associated to vertices)

- define frequency, sampling, transforms, etc

- in order to solve problems such as compression, denoising, interpolation, etc

- Overview papers:
 - [Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM'2013]
 - [Sandryhaila and Moura 2013]
Examples

- Sensor network
 - Relative positions of sensors (kNN), temperature
 - Does temperature vary smoothly?

- Social network
 - Friendship relationship, age
 - Are friends of similar age?

- Images
 - Pixel positions and similarity, pixel values
 - Discontinuities and smoothness
Outline

Graphs Everywhere

GSP basics

Contributions

Discussion
Graphs 101

- **Graph**: vertices (nodes) connected via some links (edges)
- **Graph Signal**: set of scalar/vector values defined on the vertices.

Graph $G = (\mathcal{V}, E, w)$

- **Vertex Set** $\mathcal{V} = \{v_1, v_2, \ldots\}$
- **Edge Set** $E = \{(v_1, v_2), (v_1, v_3), \ldots\}$
- **Weighted edges** w, sets of weights a_{ij}
- **Graph Signal** $x = \{x_1, x_2, \ldots\}$
- **Neighborhood, h-hop**
 \[\mathcal{N}_h(i) = \{ j \in \mathcal{V} : \text{hop_dist}(i, j) \leq h \} \]
Multiple algebraic representations

- Graph $G = (\mathcal{V}, E, w)$.
- Adjacency A, $a_{ij}, a_{ji} =$ weights of links between i and j (could be different if graph is directed.)
- Degree $D = \text{diag}\{d_i\}$, in case of undirected graph.
- Various algebraic representations
 - Normalized adjacency $\frac{1}{\lambda_{\text{max}}} A$
 - Laplacian matrix $L = D - A$.
 - Symmetric normalized Laplacian $L = D^{-1/2}L D^{-1/2}$

Discussion:
1. Undirected graphs easier to work with
2. Some applications require directed graphs
3. Graphs with self loops are useful
Graph Fourier Transform (GFT)

- Different results/insights for different choices of operator

- Laplacian $L = D - A = U \Lambda U'$

- Eigenvectors of L : $U = \{u_k\}_{k=1:N}$

- Eigenvalues of L : $\text{diag} \{ \Lambda \} = \lambda_1 \leq \lambda_2 \leq ... \leq \lambda_N$

- Eigen-pair system $\{(\lambda_k, u_k)\}$ provides Fourier-like interpretation — Graph Fourier Transform (GFT)
Eigenvectors of graph Laplacian

(a) $\lambda = 0.00$ (b) $\lambda = 0.04$ (c) $\lambda = 0.20$
(d) $\lambda = 0.40$ (e) $\lambda = 1.20$ (f) $\lambda = 1.49$

Basic idea: increased variation on the graph, e.g., $f^T L f$, as frequency increases
Outline

Graphs Everywhere

GSP basics

Contributions

Discussion
Graph Filterbank Designs

- Formulation of critically sampled graph filterbank design problem
- Design filters using spectral techniques [Hammond et al. 2009].
- Orthogonal (not compactly supported) [Narang and O. TSP’12]
- Bi-Orthogonal (compactly supported) [Narang and O. TSP’13]
Reconstructed graph-signals for each channel.
Graph Sampling?

- Measure a few nodes to estimate information throughout the graph
- Reconstruct signal in whole graph

Questions:
- What properties enable recovery? Need to define frequency
- How to sample? No obvious regular sampling
- How to reconstruct? Filtering is needed
Graph Sampling?

- Measure a few nodes to estimate information throughout the graph
- Reconstruct signal in whole graph

Questions:
- What properties enable recovery? Need to define frequency
- How to sample? No obvious regular sampling
- How to reconstruct? Filtering is needed
Results: Real Datasets

- **USPS**: handwritten digits
 - $x_i = 16 \times 16$ image
 - number of classes = 10
 - K-NN graph with $K = 10$
 - $w_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$

- **ISOLET**: spoken letters
 - $x_i \in \mathbb{R}^{617}$ speech features
 - number of classes = 26
 - K-NN graph with $K = 10$
 - $w_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$

- **Newsgroups**: documents
 - $x_i \in \mathbb{R}^{3000}$ tf-idf of words
 - number of classes = 10
 - K-NN graph with $K = 10$
 - $w_{ij} = \frac{x_i^\top x_j}{\|x_i\|\|x_j\|}$
Assumptions

- Given data matrix \(X = [x_1, \cdots, x_N] \in \mathbb{R}^{n \times N} \).
- The \(k \)-th row of \(X \) (\(k \)-th variable) is attached to \(k \)-th vertex of the graph.
- Each \(x_i \) is a graph signal in an unknown graph.
 - Sensor network: each vertex is a sensor, signal is a measurement/time series
- Data model: attractive Gaussian Markov Random Field (a-GMRF) \(\Leftrightarrow \) Gaussian with a Generalized Laplacian (GL) for precision matrix.
 - \(Q = P + L \) with \(P \) diagonal (self loop matrix) and \(L \) a combinatorial Laplacian.
 - \(Q = (q_{ij}) \) and \(q_{ij} \leq 0 \) for all \(i \neq j \)
- Graph estimation: Max. Likelihood under aGMRF model.

Use block coordinate descent to solve

\[
\min_{Q \text{ is GL}} - \log \det(Q) + \text{tr}(QS),
\]

with \(S = \frac{1}{N} XX^T \).
Experiment: Texture graph

We consider wood textures from Brodatz dataset, with 0 and with 60 degree rotation. For each texture of Brodatz dataset, take 8×8 blocks, compute their covariance matrix S and solve GL estimation $\rho = 0$.

Texture graphs using our GL estimation (only off diagonal elements of Q). The graphs have $|E| = 130$ and $|E| = 117$ edges respectively.
Outline

Graphs Everywhere

GSP basics

Contributions

Discussion
Discussion

- Research Question (Twitter Edition):
 GSP 4 CPS + IOT @USC-CCI?
 Systems are large and irregular in space/time
 Sampling and interpolation (sensors)
 Variable topology communication networks
 Data reduction to reduce complexity; multiresolution representations
 Control and optimization of large scale systems
Discussion

- Research Question (Twitter Edition):
 - GSP 4 CPS + IOT @USC-CCI?
Discussion

- Research Question (Twitter Edition):
 - GSP 4 CPS + IOT @USC-CCI ?

- Systems are large and irregular in space/time
 - Sampling and interpolation (sensors)
Discussion

- Research Question (Twitter Edition):
 - GSP 4 CPS + IOT @USC-CCI?

- Systems are large and irregular in space/time
 - Sampling and interpolation (sensors)
 - Variable topology communication networks
Discussion

- Research Question (Twitter Edition):
 - GSP 4 CPS + IOT @USC-CCI?

- Systems are large and irregular in space/time
 - Sampling and interpolation (sensors)
 - Variable topology communication networks
 - Data reduction to reduce complexity; multiresolution representations
Discussion

- Research Question (Twitter Edition):
 - GSP 4 CPS + IOT @USC-CCI ?

- Systems are large and irregular in space/time
 - Sampling and interpolation (sensors)
 - Variable topology communication networks
 - Data reduction to reduce complexity; multiresolution representations
 - Control and optimization of large scale systems
D. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst,
“Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Data Domains”
Signal Processing Magazine, May 2013

A. Sandryhaila and J. Moura,
“Discrete Signal Processing on Graphs”
IEEE Transactions on Signal Processing, 2013