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CARRIER SYNC .
PHASE SYNC

* Problems:
* LO same frequency but out of phase.
* LO slightly different frequency.

* LO phase and frequency changing relative each other.
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(a) Received constellation (b) Received constellation (c) Received constellation
(fixed phase offset) (fixed frequency offset) (changing frequency offset)




CARRIER SYNC .
AT DEMO

* We will consider at this stage that there is perfect timing sync.

* The input comes from ADC, and after demodulation |/Q samples goes to Phase detector, one sample per symbol.
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CARRIER SYNC y
AT DEMO

* The phase of the samples are compared with a reference constellation to detect the error.

* There are two possible algorithm to do it:
* Decision Direct: the transmitted symbols are unknown and error is generated on symbol decision.

* Data Aided: the RX know in advance the symbols and correct the phase accordingly.

* In QPSK Decision Direct, samples are mapped to the nearest symbol. Then the phase after and before

quantization is calculated and finally error could be estimated.
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CARRIER SYNC i
AT BASEBAND

* Advantages: this implementation require less computational power since operate and symbol rate.
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TIMING SYNC 6
TIMING RECOVERY

* The accuracy on the de-mapping process, it is direct related to the maximum effective points.
* If RX take the samples at this points, SNR will be maximum and ISI minimized.

* Timing error sources:

* Timing phase error: taken at correct time but offset phase.

* Timing frequency error: most probably, frequency will be different on TX/RX, so the sampling phase change over time.

* Timing jitter: from the clock source that affect ADC/DAC.
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TIMING SYNC .
TIMING SYMBOL RECOVERY

* With time frequency error, not all the samples are taken at the same rate, so the frequency change and need to

be followed.

* The timing synchronization has similar blocks than carrier sync:
* Instead of phase detector, there is a Timing Error detector (TED).
* There is also a loop filter.

* Instead of VCO/NCQ, there is a voltage or numerically controlled clock. That create the reference signal to sample at

right time /phase. f \
Symbol
Output of > Sampling
matched filter Timing Error
Detector (TED)
\ J

synthesised )
symbol clock [ Loop Filter )

VCC/NCC
(Voltage or Numerically
Controlled Clock)




TIMING SYNC .
TIMING ERROR DETECTOR
* TED algorithms:
* Early-Late Gate
* Zero Crossing (Gardner Loop)
* Maximum likelihood

* Mueller and Meuller

* Depending on the previous signal knowledge the algorithm can be classified as:
* Data Aided

* Decision Direct

* The timing adjustment can be do using:
* Oversampling: the sampling rate is several times higher than the symbol rate. It chose the closest sample to the optimal.

* Interpolation: the sample rate is two times the symbol rate and after interpolation, the sampling point is obtained.



TED: EARLY LATE ANALOG
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TIMING SYNC |,
TED: EARLY LATE
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TED: EARLY LATE

* The Early-Late TED, take 3 simple per symbol: Late, Early, Punctual.
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TIMING SYNC  ,,
TED: EARLY LATE

* The S-curve define the relation between the error and the TED output. It's depend on the pulse shape, therefore

on the signal amplitude.

* In order to avoid timing dependent on signal power, usually a AGC is used before TED.
e[kl = alk] [x(kTs F AT, + 1) —x(kT~AT, +-5E)J
elk] = alk] [x((k+ 0.5)T,+1) - x((k— 0.5)T,+ -%)J
* Because Early-Late works with positive pulses, we have to square the signal.

elk] = [xj(kTS + AT, + %) —xj(kfi.—ATS + %)J



TIMING SYNC |,
TED: EARLY LATE

* After converge the NCC will create the strobe signal Ts/2 later, respect to the Punctual. Therefore, an additional

delay is added to sample the symbol at the maximum effective point.
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TIMING SYNC
NCC

* NCC instead of generate a sine signal, it give strobe signal to capture the samples. The accumulator control is

done changing the step size. The rate of the NCC is adjusted to be the symbol rate.
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* For the Timing adjust interpolation case, instead of strobe signal de NCC give a numerical value that select the

polyphase filter branch.




TIMING SYNC 5
TED: ZERO CROSSING

* Modified version of Early Late.

* Advantage, no sensitive at carrier offset (no-coherent), so Timing sync is independent on frequency sync
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TIMING SYNC
TED: ZERO CROSSING

» Zero Crossing Error: e = {x|[nT] — x|(n — DT]}x[nT — T /2]

* Need only 2 samples per symbol
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TIMING SYNC .
TIMING ADJUSTMENT: OVERSAMPLING

* Oversampling, always small phase error happen and therefore ISI.

* Disadvantage, high rate -> computational loads increase.
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TIMING SYNC
TIMING ADJUSTMENT: INTERPOLATION

* Interpolation between two samples. Following Nyquist, signal can be recovered since we are sampling twice the

max freq. Here interpolated polyphase filters are used.
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TIMING SYNC .,
POLYPHASE FILTER

* Efficient implementation of multirate filter. It is used as the interpolation filter on Timing Recovering.

DECIMATION INTERPOLATION




TIMING SYNC .,
POLYPHASE FILTER
* IMPLEMENTATION OF MULTIRATE FILTERS

Decimation Interpolation
Anti-alias Anti-image

| |
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Anti-alias Anti-image
(polyphase) (polyphase)




TIMING SYNC
POLYPHASE FILTER
* FIR POLYPHASE DECOMPOSITION

Polyphase
Structure




TIMING SYNC
POLYPHASE INTERPOLATOR
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TIMING SYNC

POLYPHASE INTERPOLATOR FOR TIME RECOVERY




TIMING SYNC
POLYPHASE TIME RECOVERY

* Instead of oversampling, the filter interpolation MF is implemented as a polyphase structure..
* Timing resolution depend on the number of branches or phase of Polyphase filter.

Use an upsampled version of the

Upsampling Approach 2: / matched filter as the interpolator filter!
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TIMING SYNC
POLYPHASE TIME RECOVERY
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TIMING SYNC
POLYPHASE TIME RECOVERY

* POLIPHASE INTERPOLATORS
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POLYPHASE TIME RECOVERY
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JOINT SYNC
COARSE FREQUENCY: FLL

* If TX/RX LO offset is bigger that the PLL bandwidth capabilities, so carrier sync will fail.

29

* In that case a coarse frequency estimation has to be implemented.
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JOINT SYNC 5,
FLL

* The algorithm use a previous knowledge of the phase modulation index M.

* For the case of QPSK, M=4, so the input signal is raised to the power of 4. This produce significant tone power
at M time the F_offset.

* The frequency offset estimation algorithm is implemented through FFT selecting the Bin with the maximum

power.
2 Spectrum of received signal ® Coarse synchronisation
2 before coarse synchronisation E (frequency offset estimation:
IS = FFT of signal raised to 4th power)
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JOINT SYNC 5,
FLL

* The sampling frequency should be selected considering the maximum expected offset. Ex: offset 400hz, M=4,
tone 1600Hz, Fs= 3200Hz

* The number of FFT it is also important because the Bin width determine the frequency resolution.
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JOINT SYNC 5,
FLL IMPLEMENTATION

Frequency Offset Estimation
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