Coded Distributed Computing

Salman Avestimehr

Computing Infrastructure of CPS

Computation-Communication Tradeoff

(1) Speeding Up Distributed Computing

• We can reduce the total computation time by trading Map time with Shuffle time

$$T_{\text{total}} = \mathbb{E}[T_{\text{Map}} + T_{\text{Shuffle}} + T_{\text{Reduce}}]$$

$$T_{\text{total, CDC}} = \min_{r} \mathbb{E}[rT_{\text{Map}} + \frac{T_{\text{Shuffle}}}{r} + T_{\text{Reduce}}]$$

• For example, consider distributed sorting using Terasort algorithm

Sorting 12 GB data with K = 16 nodes and 100 MBPS network speed

	CodeGen	Map	Pack/Encode	Shuffle	Unpack/Decode	Reduce	Total Time	Speedup
	(sec.)	(sec.)	(sec.)	(sec.)	(sec.)	(sec.)	(sec.)	
TeraSort:	_	1.86	2.35	945.72	0.85	10.47	961.25	
CodedTeraSort: $r=3$	6.06	6.03	5.79	412.22	2.41	13.05	445.56	2.16×
CodedTeraSort: $r=5$	23.47	10.84	8.10	222.83	3.69	14.40	283.33	3.39×

CDC provides 50% - 70% speed up

(2) Breaking the Parallelization Limit

• Current view:

(3) Scalable Wireless Distributed Computing

$$L_u^* = L_d^* = L_{coded} = \frac{K(1-\mu)}{K\mu} = \frac{1}{\mu} - 1$$

can accommodate any number of users without increasing the communication load

Conclusions and Research Directions

- Coding plays a fundamental role in distributed computing by enabling optimal tradeoffs between resources
- Many interesting research directions

Scaling/Speeding Machine Learning and Graph Processing Algorithms

e.g., Coded Terasort, Gradient Coding, Coded Clustering, etc

Some References

- "A Fundamental Tradeoff between Computation and Communication in Distributed Computing,"
 S. Li, M. Maddah-Ali, Q. Yu, and A. S. Avestimehr, <u>http://arxiv.org/abs/1604.07086</u>.
- "Coded Terasort,",S. Li, M. Maddah-Ali, and A. S. Avestimehr, 2017 International Workshop on Parallel and Distributed Computing for Large Scale Machine Learning and Big Data Analytics. <u>https://arxiv.org/abs/1702.04850</u>.
- ``Coding for Distributed Fog Computing", S. Li, M. A. Maddah-Ali and A. S. Avestimehr, to appear in IEEE Communications Magazine issue for Fog Computing and Networking, April 2017. Available online at <u>https://arxiv.org/abs/1702.06082</u>.
- "A Unified Coding Framework for Distributed Computing with Straggling Servers," S. Li, M. Maddah-Ali, and A. S. Avestimehr, <u>http://arxiv.org/abs/1609.01690</u>.
- "A Scalable Framework for Wireless Distributed Computing," S. Li, Q. Yu, M. Maddah-Ali, and A. S. Avestimehr, <u>http://arxiv.org/abs/1608.05743</u>.

A Toy Example

- **Key Idea:** Careful assignment of tasks to servers, such that multicast coding opportunity of size r arises in the data shuffling phase
- **Example:** 6 inputs, 3 servers, 3 functions, computation load of r=2

A Toy Example

- **Key Idea:** Careful assignment of tasks to servers, such that multicast coding opportunity of size r arises in the data shuffling phase
- **Example:** 6 inputs, 3 servers, 3 functions, computation load of r=2

CDC Mapping	1 2 3 4	3 4 5 6	5 6 1 2

A Toy Example

- **Key Idea:** Careful assignment of tasks to servers, such that multicast coding opportunity of size r arises in the data shuffling phase
- **Example:** 6 inputs, 3 servers, 3 functions, computation load of r=2

Key Challenge

- Careful assignment of MapTasks to servers, such that multicast coding opportunity of size r arises in the shuffling phase
- Example: K=Q=4, N=12, r=2

Key Challenge

- Careful assignment of MapTasks to servers, such that multicast coding opportunity of size r arises in the shuffling phase
- Example: K=Q=4, N=12, r=2

19