
Coded Distributed Computing

Salman Avestimehr

Computing	Infrastructure	of	CPS

storage

computation

time

resources

communication

energy

How	to	optimally	utilize	resources?

Fundamental	Tradeoffs	between	Resources

how	to	optimally	trade network	resources?

storage

computation

time

communication

energy

Computation	Load

Co
m
m
un

ica
tio

n	
	L
oa

d

r

L(r)

Computation-Communication	Tradeoff

What	is	the	optimal	Tradeoff	?

Computation	Load

Co
m
m
un

ica
tio

n	
	L
oa

d

r

L(r)

Computation-Communication	Tradeoff

What	is	the	optimal	Tradeoff	?

1	 2	 3	 4	 5	 6	

1 3 5

2 4 6

1 3 5

2 4 6

1 3 5

2 4 6

Reduce	Reduce	 Reduce	

�2�1 �3

Map	
1 1 1

2 2 2

Map	
3 3 3

4 4 4

Map	
5 5 5

6 6 6

Shuffle	

average	#	times	each	file	is	mapped	

MapReduce-Type	Frameworks

#	of	exchanged	intermediate	values

Computation	Load

Co
m
m
un

ica
tio

n	
	L
oa

d

r

L(r)

Today’s	Design

⇥K

Fully	Distributed	

Fully	Centralized	
1 ⇥r

⇥K � 1

K � r
⇡ 1

For	K=100,	doubling	computation	only	
reduces	the	communication	by	1%	!	

L = 1� r
K

K:	number	of	participating	servers

Computation	Load

Co
m
m
un

ica
tio

n	
	L
oa

d

r

L(r)

Today’s	Design

⇥K

Fully	Distributed	

Fully	Centralized	
1 ⇥r

⇥K � 1

K � r
⇡ 1

L = 1� r
K

Is	this	the	best	tradeoff?

Computation	Load

Co
m
m
un

ica
tio

n	
	L
oa

d

r

L(r)

Coded	Distributed	Computing

⇥K⇥r

⇥K � 1

K � r
⇡ 1

⇥r

For	K=100,	doubling	computation		
reduces	the	communication	by	50%	!

Comm.	Load	(Coded)

L
coded

= (1� r

K
)
1

r

=
L
uncoded

r

communication load ⇡ 1

computation load

What	is	the	Impact?

Computation	Load

Co
m
m
un

ica
tio

n	
	L
oa

d

r

L(r)

⇥K⇥r

⇥r

(1)	Speeding	Up	Distributed	Computing

• We	can	reduce	the	total	computation	time	by	trading	Map	time	with	Shuffle	time

T
total

= E[T
Map

+ T
Shu✏e

+ T
Reduce

]

• For	example,	consider	distributed	sorting	using	Terasort algorithm

T
total, CDC

= min
r

E[rT
Map

+
T
Shu✏e

r
+ T

Reduce

]

Table II
SORTING 12 GB DATA WITH K = 16 NODES AND 100 MBPS NETWORK SPEED

CodeGen Map Pack/Encode Shuffle Unpack/Decode Reduce Total Time Speedup
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

TeraSort: – 1.86 2.35 945.72 0.85 10.47 961.25
CodedTeraSort: r = 3 6.06 6.03 5.79 412.22 2.41 13.05 445.56 2.16⇥
CodedTeraSort: r = 5 23.47 10.84 8.10 222.83 3.69 14.40 283.33 3.39⇥

Table III
SORTING 12 GB DATA WITH K = 20 NODES AND 100 MBPS NETWORK SPEED

CodeGen Map Pack/Encode Shuffle Unpack/Decode Reduce Total Time Speedup
(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)

TeraSort: – 1.47 2.00 960.07 0.62 8.29 972.45
CodedTeraSort: r = 3 19.32 4.68 4.89 453.37 1.87 9.73 493.86 1.97⇥
CodedTeraSort: r = 5 140.91 8.59 7.51 269.42 3.70 10.97 441.10 2.20⇥

• The Map time of CodedTeraSort is approximately
r times higher than that of TeraSort. This is be-
cause that each node hashes r times more KV pairs
than that in TeraSort. Specifically, the ratios of the
CodedTeraSort’s Map time to the TeraSort’s
Map time from Table II are 6.03/1.86 ⇡ 3.2 and
10.84/1.86 ⇡ 5.8, and from Table III are 4.68/1.47 ⇡
3.2 and 8.59/1.47 ⇡ 5.8.

• While CodedTeraSort theoretically promises a fac-
tor of more than r⇥ reduction in shuffling time, the ac-
tual gains observed in the experiments are slightly less
than r. For example, for an experiment with K = 16
nodes and r = 3, as shown in Table II, the speedup
of the Shuffle stage is 945.72/412.22 ⇡ 2.3 < 3. This
phenomenon is caused by the following two factors.
1) Open MPI’s multicast API (MPI_Bcast) has an
inherent overhead per a multicast group, for instance,
a multicast tree is constructed before multicasting to a
set of nodes. 2) Using the MPI_Bcast API, the time
of multicasting a packet to r nodes is higher than that
of unicasting the same packet to a single node. In fact,
as measured in [21], the multicasting time increases
logarithmically with r.

• The sorting times in the Reduce stage of both algo-
rithms depend on the available memories of the nodes.
CodedTeraSort inherently has a higher memory
overhead, e.g., it requires persisting more intermediate
values in the memories than TeraSort for coding
purposes, hence its local sorting process takes slightly
longer. This can be observed from the Reduce column
in Tables II and III.

• The total execution time of CodedTeraSort im-
proves over TeraSort whose communication time in
the Shuffle stage dominates the computation times of
the other stages.

Further, we observe the following trends from both tables:
The impact of redundancy parameter r: As r increases,

the shuffling time reduces substantially by approximately r
times. However, the Map execution time increases linearly

with r, and more importantly the CodeGen time increases as
� K
r+1

�

. Hence, for small values of r (r < 6) we observe over-
all reduction in execution time, and the speedup increases.
However, as we further increase r, the CodeGen time will
dominate the execution time, and the speedup decreases.
Hence, in our evaluations, we have limited r to be at most
5.6

The impact of worker number K: As K increases, the
speedup decreases. This is due to the following two reasons.
1) The number of multicast groups, i.e.,

� K
r+1

�

, grows
exponentially with K, resulting in a longer execution time
of the CodeGen process. 2) When more nodes participate
in the computation, for a fixed r, less amount of KV pairs
are hashed at each node locally in the Map stage, resulting
in less locally available intermediate values and a higher
communication load.

In addition to the results in Tables II and III, more exper-
iments have been performed and their results are available
in [22], in which we observe up to 4.1⇥ speedup.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we integrate the principle of a recently
proposed Coded MapReduce scheme into the TeraSort
algorithm, developing a novel distributed sorting algorithm
CodedTeraSort. CodedTeraSort specifies a struc-
tured redundant placement of the input files that are to be
sorted, such that the same file is repetitively processed at
multiple nodes. The results of this redundant processing
enable in-network coding opportunities that substantially re-
duce the load of data shuffling. We also empirically demon-
strate the significant performance gain of CodedTeraSort
over TeraSort, whose execution is limited by data shuf-
fling.

Finally, we highlight three future directions of this work.

6The redundancy parameter r is also limited by the total storage available
at the nodes. Since for a choice of redundancy parameter r, each piece of
input KV pairs should be stored at r nodes, we can not increase r beyond
total available storage at the worker nodes

input size .

CDC	provides	50%	- 70%	speed	up	

(2)	Breaking	the	Parallelization	Limit	
• Current	view:

m
ap
	e
xe
cu
tio

n	
tim

e

number	of	servers

da
ta
	sh

uf
fli
ng
	lo
ad

number	of	servers

Ø Spread	just	enough	to	make	Map	execution	time	≈	data	shuffle	time
• e.g.,	iShuffle [Guo,	et	al.’	13]

Increase	#	servers	
by	4	times

125

Coded	Computing	with	
Computation	Load	r=2

250

500 Time	(s)

Reduce	Tasks

Map	TasksReduce

Shuffle

(3)	Scalable	Wireless	Distributed	Computing

paper is to minimize the load of the communication in both
uplink and downlink. The design parameters are (1) dataset
placement at users, i.e., the subset of the dataset that each
device downloads and stores in its local memory, (2) the
communication schemes in both uplink and downlink, i.e.
efficiently forming the communication signals, considering
what each user needs and exploiting what each user already
has. We note that when the aggregated size of the memories
is greater than the size of the dataset, the subset of the dataset
stored in different devices have some overlap. As we will
see later, these overlaps create some coding opportunities that
can improve the load of the communication. The challenge
is how to design the dataset placement and communication
schemes jointly to achieve the optimum uplink and downlink
communication loads.

Our main result is to characterize the optimal region of
uplink and downlink communication loads required for edge-
facilitated wireless distributed computing. We propose an
explicit dataset placement algorithm, and uplink and downlink
communication schemes that can achieve any of the uplink-
downlink load pairs in the region. The proposed scheme takes
advantage of the imposed overlap structure of datasets placed
at the users, and creates multicast coding opportunities that
can significantly reduce the communication load. In fact, the
load improvement is a linear function of the aggregated size
of the local memories at the users, thus scales with the size of
the network (number of the users in the system). As a result,
our proposed scheme provides a scalable design for edge-
facilitated wireless distributed computing (i.e., adding more
users to the system does not effectively increase the required
uplink and downlink communication loads). We also develop
a tight information-theoretic outer-bound and establish the
optimality of the proposed scheme. In particular, we show that
the proposed scheme simultaneously achieves the minimum
uplink and downlink communication loads.

We also generalize the framework to a decentralized setting,
in which a random and a priori unknown subset of users
participate in distributed computing at each time. We consider
a uniform and random dataset placement strategy at the users,
in which each user randomly, uniformly, and independently
chooses and stores a subset of the dataset, up to the memory
size. We completely characterize the optimal region of uplink
and downlink communication loads required for distributed
computing in such a decentralized setting, by proposing a
coded uplink-downlink communication scheme and establish-
ing a tight information-theoretic outer bound on the load
region. We show that the proposed scheme performs very close
to the centralized scheme in terms of the communication loads.
In particular, as the number of participating users increases, the
uplink and downlink communication loads of the decentralized
setting converge to those of the centralized setting. This is
in contrary to the fact that in decentralized setting, unlike
centralized one, the set and the number of participating users
are not known in the dataset placement phase.
Relation to Prior Works. The problem of characterizing
the minimum communication load required for distributed

computing in MapReduce frameworks was recently proposed
in [8], [9], for a wireline scenario where the computing nodes
can directly communicate with each other through a shared
link. In this paper, we extend this problem to a wireless setting,
where distributed computing is performed on a set of wireless
devices, and the data exchange across them can only be
performed via a wireless access point. The idea of efficiently
creating and exploiting coded multicasting opportunities was
also initially proposed in the context of cache networks in [10],
[11], and extended in [12], [13], where caches pre-fetch part
of the content in a way to enable coding during the content
delivery, minimizing the network traffic. In this paper, we
demonstrate that such coding opportunities can also be utilized
to reduce the communication load of edge-facilitated wireless
distributed computing, by taking advantage of the overlap of
computations at the users.

There have also been several recent works on communica-
tion design and resource allocation for mobile-edge computa-
tion offloading (see e.g., [14], [15]), in which the computation
is offloaded to clouds located at the edges of cellular networks.
In contrast to these works, in this paper our focus is on the
scenario that the “edge” only facilitates the communication
required for distributed computing, and all computations are
done distributedly at the users.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and prob-
lem formulation for the proposed edge-facilitated wireless
distributed computing framework.

Uplink

Downlink

files

Dataset

Input

Output

Input

Output Input

Output

Access Point

User 1

User 2

User Kfiles

files

Fig. 1: System model of the edge-facilitated wireless distributed
computing framework. The system has K mobile users that all
connect wirelessly to an access point. Users can communicate to the
access point via orthogonal uplink channels and receive broadcast
messages from the access point on the downlink. Every user k,
k 2 {1, . . . ,K} has an input dk to process using the N files
w1, . . . , wN in a dataset, and can store a µ fraction of the dataset in
the local memory Uk.
A. System Model

We consider a system that has K mobile users, for some
K 2 N. As illustrated in Fig. 1, all K users are connected
wirelessly to an access point (e.g., a cellular base station or
a Wi-Fi router) located at the edge of a mobile network. The
uplink channels of the K users towards the access point are
orthogonal to each other, and the signals transmitted by the
access point on the downlink are received by all the users.

The system has a dataset (e.g. the feature repository of ob-
jects in the image recognition example mentioned in Section I)

can	accommodate	any	number	of	users	without	increasing	the	communication	load

L⇤
u

= L⇤
d

= L
coded

=
K(1� µ)

Kµ
=

1

µ
� 1

Conclusions	and	Research	Directions
• Coding	plays	a	fundamental	role	in	distributed	computing	by	enabling	optimal	

tradeoffs	between	resources
• Many	interesting	research	directions

storage	

computa-on	

-me	

communica-on	

energy	

Coded	
Distributed	
Computing

Scaling/Speeding	Machine	Learning	and	Graph	Processing	Algorithms
e.g.,	Coded	Terasort,	Gradient	Coding,	Coded	Clustering,	etc

Edge	and	Fog	Computing
e.g.,	PHY-aware	computing

Optimal	Tradoeff Between	Resources

Coding	for	Stragglers
and	Failures

Some	References
• “A	Fundamental	Tradeoff	between	Computation	and	Communication	in	Distributed	Computing,”	

S.	Li,	M.	Maddah-Ali,	Q.	Yu,	and	A.	S.	Avestimehr,	http://arxiv.org/abs/1604.07086.

• “Coded Terasort,“,S.	Li,	M.	Maddah-Ali,	and A.	S.	Avestimehr,	2017	International	Workshop	on	
Parallel	and Distributed	Computing	for Large	Scale Machine Learning	and Big	Data	Analytics.	
https://arxiv.org/abs/1702.04850.	

• ``Coding for Distributed	Fog	Computing“,	S.	Li,	M.	A.	Maddah-Ali	and A.	S.	Avestimehr,	to appear
in	IEEE	Communications	Magazine	issue for Fog	Computing	and Networking,	April	2017.	
Available online	at	https://arxiv.org/abs/1702.06082.

• “A	Unified	Coding Framework	for Distributed	Computing	with Straggling Servers,“	S.	Li,	M.	
Maddah-Ali,	and A.	S.	Avestimehr,	http://arxiv.org/abs/1609.01690.

• “A	Scalable Framework	for Wireless	Distributed	Computing,“	S.	Li,	Q.	Yu,	M.	Maddah-Ali,	and A.	
S.	Avestimehr,	http://arxiv.org/abs/1608.05743.

5 6

A	Toy	Example

1 2 3 4

• Key	Idea: Careful	assignment	of	tasks	to	servers,	such	that	multicast	coding	
opportunity	of	size	r	arises	in	the	data	shuffling	phase

• Example:		6	inputs,	3	servers,	3	functions,	computation	load	of	r=2

3 4

5 6

5 6

1 2

A	Toy	Example

1 2

3 4

• Key	Idea: Careful	assignment	of	tasks	to	servers,	such	that	multicast	coding	
opportunity	of	size	r	arises	in	the	data	shuffling	phase

• Example:		6	inputs,	3	servers,	3	functions,	computation	load	of	r=2

CDC	Mapping

2 6

3 4

5 6

5 6

1 2

1 1 1
2 2 2

1 3 5
2 4 6

3 3 3
4 4 4

3 3 3
4 4 4

1 3 5
2 4 6

5 5 5
6 6 6

5 5 5
6 6 6

1 3 5
2 4 6

1 1 1
2 2 2

1 3⊕ 5 4⊕ ⊕

A	Toy	Example

Each	coded	packet	is	useful	for	two	servers	

1 2

3 4

Lcoded=3

Luncoded=6

• Key	Idea: Careful	assignment	of	tasks	to	servers,	such	that	multicast	coding	
opportunity	of	size	r	arises	in	the	data	shuffling	phase

• Example:		6	inputs,	3	servers,	3	functions,	computation	load	of	r=2

CDC	Mapping

• Careful	assignment	of	MapTasks to	servers,	such	that	multicast	coding	
opportunity	of	size	r	arises	in	the	shuffling	phase

• Example:	K=Q=4,	N=12,	r=2

18

Key	Challenge

Server 1

Map

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6

(A,10)[1], (B,25)[1], (C,15)[1], (D,6)[1]
(A,10)[2], (B,25)[2], (C,15)[2], (D,6)[2]
(A,10)[3], (B,25)[3], (C,15)[3], (D,6)[3]
(A,10)[4], (B,25)[4], (C,15)[4], (D,6)[4]
(A,10)[5], (B,25)[5], (C,15)[5], (D,6)[5]
(A,10)[6], (B,25)[6], (C,15)[6], (D,6)[6]

Server 2 Server 3 Server 4

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6

(A,10)[1], (B,25)[1], (C,15)[1], (D,6)[1]
(A,10)[2], (B,25)[2], (C,15)[2], (D,6)[2]
(A,10)[3], (B,25)[3], (C,15)[3], (D,6)[3]
(A,10)[4], (B,25)[4], (C,15)[4], (D,6)[4]
(A,10)[5], (B,25)[5], (C,15)[5], (D,6)[5]
(A,10)[6], (B,25)[6], (C,15)[6], (D,6)[6]

(A,11)[7], (B,21)[7], (C,15)[7], (D,5)[7]
(A,14)[8], (B,21)[8], (C,18)[8], (D,5)[8]
(A,10)[9], (B,21)[9], (C,16)[9], (D,5)[9]
(A,15)[10], (B,21)[10], (C,17)[10], (D,5)[10]
(A,15)[11], (B,21)[11], (C,19)[11], (D,5)[11]
(A,10)[12], (B,21)[12], (C,14)[12], (D,5)[12]

Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

(A,11)[7], (B,21)[7], (C,15)[7], (D,5)[7]
(A,14)[8], (B,21)[8], (C,18)[8], (D,5)[8]
(A,10)[9], (B,21)[9], (C,16)[9], (D,5)[9]
(A,15)[10], (B,21)[10], (C,17)[10], (D,5)[10]
(A,15)[11], (B,21)[11], (C,19)[11], (D,5)[11]
(A,10)[12], (B,21)[12], (C,14)[12], (D,5)[12]

Fig. 2. The Map tasks execution for the naive Map tasks assignment. Each server counts the number of occurrences of A, B, C and D in the assigned
chapters, and generates 4 intermediate (key,value) pairs. For example, a pair (A, 10)[1] indicates that A appears 10 times in Chapter 1.

• At each time slot t 2 N, one of the K servers,
say Server k, creates a message of F bits as
a function of the intermediate values known by
that server after the Map tasks execution, denoted
by Xk,t = �k,t ({vqn : q 2 {1, . . . , Q}, n 2 M0

k}), and
sends it via the multicast network to all other servers.

• The communication process continues for T times slots,
until Server k, for all k 2 {1, . . . ,K}, is able to success-
fully construct the intermediate values needed to execute
the reducers for the keys in Wk, based on the messages
it receives from other servers and its own Map outcomes
for the keys in Wk (i.e., {vqn : q 2 Wk, n 2 M0

k}).
• The communication load of a data shuffling scheme,

denoted by L, is defined as L , E{T}, i.e., the average
number of communication time slots required for that
scheme, where the average is taken over all possible Map
tasks execution outcomes (i.e., which of the rK servers
out of the pK servers have mapped each subfile). ⇤

As a baseline, we can consider the conventional MapReduce
approach where each subfile is assigned to and mapped at
only one server (pK = rK = 1). In this setting, each server
maps N

K subfiles, obtaining N
K intermediate values for each

of its assigned keys. Since each server reduces Q
K keys, the

communication load for the conventional approach is

Lconv = K · Q
K

·
✓

N � N

K

◆

= QN

✓

1� 1

K

◆

. (1)

By increasing p and r beyond 1
K , each subfile is now

repeatitively mapped at rK > 1 servers and the total
number of executed Map tasks increases by rK times:
K
P

k=1
|M0

k| = rKN . Server k, k 2 {1, . . . ,K}, needs another
Q
K (N � |M0

k|) intermediate values to execute its Q
K reducers.

These data requests can for example be satisfied by a simple
uncoded data shuffling scheme such that each of the required
intermediate values is sent over the shared link at a time,
achieving the following communication load

Luncoded(r) =
Q

K

K
X

k=1

(N � E {|M0
k|}) = QN(1� r). (2)

Let us illustrate the uncoded scheme by describing the
shuffling phase of our running word-counting example.
Example (Word-Counting: Data Shuffling via Uncoded

Scheme). Because Q = K = 4, each server executes one
reducer, i.e., Server 1 evaluates A, Server 2 evaluates B, Server
3 evaluates C, and Server 4 evaluates D.

Based on the results of the Map tasks execution (Fig. 2),
Server 1 and 2 need the values of A and B respectively in
Chapters 7, 8, 9, 10, 11, 12. Server 3 and 4 need the values of
C and D respectively in Chapters 1, 2, 3, 4, 5, 6. An uncoded
data shuffling is carried out as follows:

1) Server 3 sends intermediate pairs (A, 11)[7], (A, 14)[8],
(A, 10)[9], (A, 15)[10], (A, 15)[11], (A, 10)[12] and
then (B, 21)[7], (B, 21)[8], (B, 21)[9], (B, 21)[10],
(B, 21)[11], (B, 21)[12].

2) Server 2 sends intermediate pairs (C, 15)[1], (C, 15)[2],
(C, 15)[3], (C, 15)[4], (C, 15)[5], (C, 15)[6] and then
(D, 6)[1], (D, 6)[2], (D, 6)[3], (D, 6)[4], (D, 6)[5],
(D, 6)[6].

After the communication every server knows the values of
its interested word in all 12 chapters. The shuffling phase
lasts for 24 time slots and thus the communication load of
the uncoded scheme is 24, which is consistent with (2) for
N = 12, Q = 4 and r =

1
2 . Notice that, if we had employed

the conventional MapReduce approach where each subfile is
mapped at only one server, the communication load of this
particular job would have been 36 (setting N = 12 and
Q = K = 4 in (1)). ⇤

Comparing equations (1) and (2), we notice that by repeat-
edly mapping the same subfile at more than one server, the
communication load of the shuffling phase in MapReduce can
be improved by a factor of 1� 1

K
1�r , when using a simple uncoded

scheme. This improvement in the communication load results
from the fact that by mapping each subfile repeatedly at
multiple servers, the servers know rK times more intermediate
values than the conventional approach, thus requiring less
amount of communication during the shuffling phase. We
denote this gain as the repetition gain, which is due to knowing
more intermediate values locally at each server.

As we will show next, in addition to the repetition gain,

• Careful	assignment	of	MapTasks to	servers,	such	that	multicast	coding	
opportunity	of	size	r	arises	in	the	shuffling	phase

• Example:	K=Q=4,	N=12,	r=2

19

Key	Challenge

Server 1 Server 2 Server 3

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6

Chapter 1
Chapter 2
Chapter 7
Chapter 8
Chapter 9
Chapter 10

Chapter 3
Chapter 4
Chapter 7
Chapter 8
Chapter 11
Chapter 12

Map

Server 4

Chapter 5
Chapter 6
Chapter 9
Chapter 10
Chapter 11
Chapter 12

(A,10)[1], (B,25)[1], (C,15)[1], (D,6)[1]
(A,10)[2], (B,25)[2], (C,15)[2], (D,6)[2]
(A,10)[3], (B,25)[3], (C,15)[3], (D,6)[3]
(A,10)[4], (B,25)[4], (C,15)[4], (D,6)[4]
(A,10)[5], (B,25)[5], (C,15)[5], (D,6)[5]
(A,10)[6], (B,25)[6], (C,15)[6], (D,6)[6]

(A,10)[1], (B,25)[1], (C,15)[1], (D,6)[1]
(A,10)[2], (B,25)[2], (C,15)[2], (D,6)[2]
(A,11)[7], (B,21)[7], (C,15)[7], (D,5)[7]
(A,14)[8], (B,21)[8], (C,18)[8], (D,5)[8]
(A,10)[9], (B,21)[9], (C,16)[9], (D,5)[9]
(A,15)[10], (B,21)[10], (C,17)[10], (D,5)[10]

(A,10)[3], (B,25)[3], (C,15)[3], (D,6)[3]
(A,10)[4], (B,25)[4], (C,15)[4], (D,6)[4]
(A,11)[7], (B,21)[7], (C,15)[7], (D,5)[7]
(A,14)[8], (B,21)[8], (C,18)[8], (D,5)[8]
(A,15)[11], (B,21)[11], (C,19)[11], (D,5)[11]
(A,10)[12], (B,21)[12], (C,14)[12], (D,5)[12]

(A,10)[5], (B,25)[5], (C,15)[5], (D,6)[5]
(A,10)[6], (B,25)[6], (C,15)[6], (D,6)[6]
(A,10)[9], (B,21)[9], (C,16)[9], (D,5)[9]
(A,15)[10], (B,21)[10], (C,17)[10], (D,5)[10]
(A,15)[11], (B,21)[11], (C,19)[11], (D,5)[11]
(A,10)[12], (B,21)[12], (C,14)[12], (D,5)[12]

(BC,40)[3,1] (AC,26)[7,2] (AB,39)[8,4] (AB,40)[10,6]
(C,15)[1]

(B,25)[3]

(BD,31)[5,1]

(CD,21)[5,3]

(D,6)[1]

(B,25)[5]

(D,6)[3]

(C,15)[5]

(AD,16)[9,2]

(CD,21)[9,7]

(A,11)[7]

(C,15)[2]

(A,10)[9]

(D,6)[2]

(D,5)[7]

(C,16)[9] (B,21)[11] (B,21)[12]

(C,17)[10]

(A,14)[8]

(B,25)[4]

(A,15)[11]

(D,6)[4]

(A,10)[12]

(C,15)[6]

(A,15)[10]

(B,25)[6]

(AD,21)[11,4]

(BD,26)[11,8]
(D,5)[8]

(AC,25)[12,6]

(BC,38)[12,10]

Fig. 3. The Map tasks execution of Coded MapReduce for a word-counting job. Having generated 24 (key,value) pairs, one for each word and each of the
assigned chapters, each server further generates 3 coded (key,value) pairs, each with a different color by summing up the two intermediate values with the
same color. For example at Server 1, the red coded pair (BC, 40)[3, 1] generated from (B, 25)[3] and (C, 15)[1] indicates that the number of occurrences
of B in Chapter 3 and the number of occurrences of C in Chapter 1 sum up to 40.

repeatedly mapping each subfile at multiple servers can have a
much more significant impact on reducing the communication
load of the data shuffling, which can be achieved by a more
careful assignment of Map tasks to servers and exploiting
coding in the data shuffling phase. We will next illustrate
this through a motivating example, which forms the basis of
the general Coded MapReduce framework that we will later
present in Section IV.

III. CODED MAPREDUCE: A MOTIVATING EXAMPLE

In this section we motivate Coded MapReduce via a simple
example. In particular, we demonstrate through this example
that, by carefully assigning Map tasks to the servers, there will
be novel coding opportunities in the shuffling phase that can be
utilized to significantly reduce the inter-server communication
load of MapReduce.

We consider the same job of counting 4 words in a book
with 12 chapters using 4 servers. While maintaining the same
number of chapters to map at each server (6 in this case), we
consider a new Map tasks assignment as follows.
Map Tasks Assignment

Instead of using the naive assignment, the master controller
assigns the Map tasks such that M1 = {1, 2, 3, 4, 5, 6},
M2 = {1, 2, 7, 8, 9, 10}, M3 = {3, 4, 7, 8, 11, 12}, M4 =

{5, 6, 9, 10, 11, 12}. Notice that in this assignment each chap-
ter is assigned to exactly two servers and every two servers
share exactly two chapters.
Map Tasks Execution

The master controller sets r = p such that each server has to
finish mapping all assigned chapters. The execution of the Map
tasks is different from that of the naive assignment such that
after generating 4 intermediate (key,value) pairs for each of the

assigned chapters, each server generates 3 coded (key,value)
pairs as follows (see Fig. 3):

• Server 1 adds up the values of (B, 25)[3] and (C, 15)[1]

to generate a pair (BC, 40)[3, 1], adds up the values
of (B, 25)[5] and (D, 6)[1] to generate another pair
(BD, 31)[5, 1], and adds up the values of (C, 15)[5] and
(D, 6)[3] to generate a third pair (CD, 21)[5, 3],

• Server 2 adds up the values of (A, 11)[7] and (C, 15)[2]

to generate a pair (AC, 26)[7, 2], adds up the values
of (A, 10)[9] and (D, 6)[2] to generate another pair
(AD, 16)[9, 2], and adds up the values of (C, 16)[9] and
(D, 5)[7] to generate a third pair (CD, 21)[9, 7],

• Server 3 adds up the values of (A, 14)[8] and (B, 25)[4]

to generate a pair (AB, 39)[8, 4], adds up the values
of (A, 15)[11] and (D, 6)[4] to generate another pair
(AD, 21)[11, 4], and adds up the values of (B, 21)[11]

and (D, 5)[8] to generate a third pair (BD, 26)[11, 8],
• Server 4 adds up the values of (A, 15)[10] and (B, 25)[6]

to generate a pair (AB, 40)[10, 6], adds up the values
of (A, 10)[12] and (C, 15)[6] to generate another pair
(AC, 25)[12, 6], and adds up the values of (B, 21)[12]

and (C, 17)[10] to generate a third pair (BC, 38)[12, 10].
A coded pair (W1W2, x)[n1, n2] has key W1W2 and value

x, and it indicates that there are x occurrences in total of Word
W1 in Chapter n1 and Word W2 in Chapter n2.
Data Shuffling

The Reduce tasks are distributed the same as before. To
fulfill the data requests for reduction, the shuffling process
is carried out such that each server sends the 3 coded pairs
generated during Map tasks execution.

Having received all coded pairs, each server performs
an additional decoding operation before executing the final

