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Trends in loT-enabled systems

@ Physical systems with sensing, communication and computing
capabilities (e.g., smart grids)
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Trends in loT-enabled systems

@ Physical systems with sensing, communication and computing
capabilities

e Data-driven decision-making (e.g., smart home)
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Trends in loT-enabled systems

@ Physical systems with sensing, communication and computing
capabilities

@ Data-driven decision-making

@ Autonomy or semi-autonomy (e.g., drone air traffic control)
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From traditional to loT-enabled systems:
Risk generated from data, statistics, human
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From traditional to loT-enabled systems:
Risk generated from data, statistics, human
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o Data: inaccuracy, insufficient samples

@ Statistical model: wrong prior knowledge, local optimality



Risk-aware distributionally robust control

How can we design a controller that is
robust against errors in the probability distribution of uncertainties?
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Risk-aware distributionally robust control

How can we design a controller that is
robust against errors in the probability distribution of uncertainties?

minmax E*[Cost(z,u,w)] (Worst-case cost)
oo

s.t.  Risk[Loss(z,u,w)] < R (Worst-case risk)
Tir1 = [z, up,wy), wy ~ g (System dynamics)
pt € Dy (Admissible prob. distributions)

@ Use of risk measures: chance constraints, variance, CVaR

@ Consideration of the worst-case probability distribution of
uncertainties: allowing errors in estimated distributional information
about uncertainties



Examples of risk measures
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% Maximum
VaR, loss
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S ey = ................
0 CVaR,, 1 loss (L)
Value-at-Risk Conditional Value-at-Risk
VaRq(L) := CVaR, (L) :=
inf{x e R| Fr(z) > a} E[L | L > VaR,(L)]
——

cdfof L

“Penalizing the (1 — o) worst-case quantile”
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Examples of ambiguity sets of admissible
distributions

“Allowing errors in the prob. distribution of uncertainties”

@ Moment constraints (m;, 3;: mean and covariance estimate)

]D)t = {’U/t € P(Rl) | /Lt(Wt) — 1’ (Support)
|E,, [wi] —my| < b, (first moment)

E,., [(w; — my)(w, —my) '] < ¢t} (second moment)

@ Confidence constraints

Dy == {m € P(RY) | 1(CY) € [p!,BY), i € T}

o Statistical distance (v: empirical (nominal) distribution)

Dy == {s € PRY) | Wy(pue, v) < 0}
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Dynamic programming solution

minmax [E[Cost(x,u,w)] (Worst-case cost)
u “w

s.t. Risk"[Loss(x,u,w)] < R (Worst-case risk)
Tir1 = f(xe,up, we), we~ iy (System dynamics)
p: € Dy (Admissible prob. distributions)



Dynamic programming solution

minmax [EF[Cost(x, u, w)] + ARisk”[Loss(x, u, w)]
U m

st mpp1 = fog,u,we),  wy ~ py
e € Dy

@ Risk as expectation minimization (for a class of risk measures)
» CVaR: CVaR,[L] = minger E[y + 2= (L — y)*]
» Variance: Var[L] = minyeg E[(L — y)?]
» Median absolute deviation: MAD[L] = minycr E[|L — y]



Dynamic programming solution

minmax E[Cost(x, u, w)] + A min E*[g(Loss(x, u, w), y)]
U w yERF

s.t. 2441 = f(:vt,ut,wt), Wy ~ [t
e € Dy

@ Risk as expectation minimization for a class of risk measures
(e.g., CVaR, variance, MAD)



Dynamic programming solution

min min max E*[Cost(z, u,w)] + Ag(Loss(z, u, w), y)]
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e € Dy

@ Risk as expectation minimization for a class of risk measures
(e.g., CVaR, variance, MAD)

@ Bilevel optimization formulation: [Milier, Yang, SIAM J. Control and Optimization, 2017]

> inner “minimax” problem (over u, ) — dynamic programming
» outer “min” problem (over y) — gradient descent



Dynamic programming solution

min min max E*[Cost(z, u,w)] + Ag(Loss(z, u, w), y)]
yeRk u

st w1 = flog,u,we),  wy ~ gy

e € Dy

@ Risk as expectation minimization for a class of risk measures
(e.g., CVaR, variance, MAD)

@ Bilevel optimization formulation: [Milier, Yang, SIAM J. Control and Optimization, 2017]

> inner “minimax” problem (over u, ) — dynamic programming
» outer “min” problem (over y) — gradient descent

@ Duality-based dynamic programming: [vang, arxiv:1701.06260, 2017]

» Strong duality in infinite dimensional LP
» Semi-infinite program formulation



Application to smart home energy management

Objective: energy cost-minimizing air conditioning

Risk constraint: Prob(temperature in comfort range) > 0.95
Estimated distribution: truncated Gaussian

Actual distribution: uniform



Application to smart home energy management

@ Objective: energy cost-minimizing air conditioning

e Risk constraint: Prob(temperature in comfort range) > 0.95
@ Estimated distribution: truncated Gaussian

@ Actual distribution: uniform

@ Standard probabilistic safety-aware control (Prob. of safety: 0.86)

10 20 30 40 50 60 70 80 90
time (min)

@ Proposed distributionally robust control (Prob. of safety: 0.995)

. . . . . . . .
10 20 30 40 50 60 70 80 90
time (min)



Ongoing and future work

@ Improving scalability
@ Combining with statistical learning for real-time adaptation

@ Applications:

refrigerator energy and inventory control under demand uncertainty
smart home and building

smart grids (balancing uncertain wind energy)

air traffic management for drones

semi-autonomous systems with uncertain human inputs and preferences
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