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Trends in IoT-enabled systems
Physical systems with sensing, communication and computing
capabilities (e.g., smart grids)
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From traditional to IoT-enabled systems:
Risk generated from data, statistics, human
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Risk-aware distributionally robust control

How can we design a controller that is
robust against errors in the probability distribution of uncertainties?

min
u

max
µ

Eµ[Cost(x, u, w)] (Worst-case cost)

s.t. Riskµ[Loss(x, u, w)] ≤ R (Worst-case risk)

xt+1 = f(xt, ut, wt), wt ∼ µt (System dynamics)

µt ∈ Dt (Admissible prob. distributions)

Use of risk measures: chance constraints, variance, CVaR

Consideration of the worst-case probability distribution of
uncertainties: allowing errors in estimated distributional information
about uncertainties
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Examples of risk measures
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Conditional Value-at-RiskValue-at-Risk

VaR↵(L) :=

inf{x 2 R | FL(x) � ↵}}

c.d.f of L

CVaR↵(L) :=

E[L | L � VaR↵(L)]

“Penalizing the (1− α) worst-case quantile”
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Examples of ambiguity sets of admissible
distributions

“Allowing errors in the prob. distribution of uncertainties”

Moment constraints (mt, Σt: mean and covariance estimate)

Dt :=
{
µt ∈ P(Rl) | µt(Wt) = 1, (support)

|Eµt [wt]−mt| ≤ bt, (first moment)

Eµt [(wt −mt)(wt −mt)
>] ≤ ctΣt

}
(second moment)

Confidence constraints

Dt :=
{
µt ∈ P(Rl) | µt(Cit) ∈ [pi

t
,pit], i ∈ It

}
Statistical distance (ν: empirical (nominal) distribution)

Dt :=
{
µt ∈ P(Rl) |Wp(µt, ν) ≤ θ

}
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Dynamic programming solution

min
u

max
µ

Eµ[Cost(x, u, w)] (Worst-case cost)

s.t. Riskµ[Loss(x, u, w)] ≤ R (Worst-case risk)

xt+1 = f(xt, ut, wt), wt ∼ µt (System dynamics)

µt ∈ Dt (Admissible prob. distributions)
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Dynamic programming solution

min
u

max
µ

Eµ[Cost(x, u, w)] + λRiskµ[Loss(x, u, w)]

s.t. xt+1 = f(xt, ut, wt), wt ∼ µt
µt ∈ Dt

Risk as expectation minimization (for a class of risk measures)

I CVaR: CVaRα[L] = miny∈R E
[
y + 1

1−α (L− y)+
]

I Variance: Var[L] = miny∈R E[(L− y)2]

I Median absolute deviation: MAD[L] = miny∈R E[|L− y|]
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Dynamic programming solution

min
u

max
µ

Eµ[Cost(x, u, w)] + λ min
y∈Rk

Eµ[g(Loss(x, u, w), y)]

s.t. xt+1 = f(xt, ut, wt), wt ∼ µt
µt ∈ Dt

Risk as expectation minimization for a class of risk measures
(e.g., CVaR, variance, MAD)
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s.t. xt+1 = f(xt, ut, wt), wt ∼ µt
µt ∈ Dt

Risk as expectation minimization for a class of risk measures
(e.g., CVaR, variance, MAD)

Bilevel optimization formulation: [Miller, Yang, SIAM J. Control and Optimization, 2017]

I inner “minimax” problem (over u, µ) – dynamic programming
I outer “min” problem (over y) – gradient descent

Duality-based dynamic programming: [Yang, arXiv:1701.06260, 2017]

I Strong duality in infinite dimensional LP
I Semi-infinite program formulation
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Application to smart home energy management

Objective: energy cost-minimizing air conditioning

Risk constraint: Prob(temperature in comfort range) ≥ 0.95

Estimated distribution: truncated Gaussian

Actual distribution: uniform

1 Standard probabilistic safety-aware control (Prob. of safety: 0.86)
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2 Proposed distributionally robust control (Prob. of safety: 0.995)
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Ongoing and future work

Improving scalability

Combining with statistical learning for real-time adaptation

Applications:
I refrigerator energy and inventory control under demand uncertainty
I smart home and building
I smart grids (balancing uncertain wind energy)
I air traffic management for drones
I semi-autonomous systems with uncertain human inputs and preferences
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