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Graphs everywhere ...

Graphs provide a flexible model to represent many datasets:

I Examples in Euclidean domains
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(a) Computer graphics1 (b) Wireless sensor networks 2 (c) image - graphs



... and then some

I Examples in non-Euclidean settings
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(a) Social Networks 3, (b) Finite State Machines(FSM)



Graph Signal Processing

I Given a graph (fixed or learned from data)

I and given signals on the graph (set of scalars associated to vertices)

I define frequency, sampling, transforms, etc

I in order to solve problems such as compression, denoising, interpolation,
etc

I Overview papers:
[Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM’2013]
[Sandryhaila and Moura 2013]



Examples
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I Sensor network

I Relative positions of sensors
(kNN), temperature

I Does temperature vary
smoothly?

I Social network

I Friendship relationship, age
I Are friends of similar age?

I Images

I Pixel positions and similarity,
pixel values

I Discontinuities and smoothness
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Graphs 101

I Graph : vertices (nodes) connected via some links (edges)

I Graph Signal: set of scalar/vector values defined on the vertices.
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Graph-signal

Graph G = (V,E ,w)

Vertex Set V = {v1, v2, ...}
Edge Set E = {(v1, v2), (v1, v3), ...}
Weighted edges w , sets of weights aij

Graph Signal x = {x1, x2, ...}
Neighborhood, h-hop
Nh(i) = {j ∈ V : hop dist(i , j) ≤ h}



Multiple algebraic representations
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I Graph G = (V,E ,w).

I Adjacency A, aij , aji = weights of
links between i and j (could be
different if graph is directed.)

I Degree D = diag{di}, in case of
undirected graph.

I Various algebraic representations

I Normalized adjacency 1
|λmax |A

I Laplacian matrix L = D− A.

I Symmetric normalized
Laplacian L = D−1/2LD−1/2

I Discussion:

1. Undirected graphs easier to work with
2. Some applications require directed graphs
3. Graphs with self loops are useful



Graph Fourier Transform (GFT)

I Different results/insights for different choices of operator

I Laplacian L = D− A = UΛU′

I Eigenvectors of L : U = {uk}k=1:N

I Eigenvalues of L : diag{Λ} = λ1 ≤ λ2 ≤ ... ≤ λN

I Eigen-pair system {(λk , uk)} provides Fourier-like interpretation —
Graph Fourier Transform (GFT)



Eigenvectors of graph Laplacian

(a) λ = 0.00 (b) λ = 0.04 (c) λ = 0.20

(d) λ = 0.40 (e) λ = 1.20 (f) λ = 1.49

I Basic idea: increased variation on the graph, e.g., ftLf, as frequency
increases
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Graph Filterbank Designs

I Formulation of critically sampled graph filterbank design problem

I Design filters using spectral techniques [Hammond et al. 2009].

I Orthogonal (not compactly supported) [Narang and O. TSP’12]

I Bi-Orthogonal (compactly supported) [Narang and O. TSP’13]

analysis side synthesis side

filter downsample upsample filter

- -



Example
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Reconstructed graph-signals for each channel.



Graph Sampling?

I Measure a few nodes to estimate information throughout the graph

I Reconstruct signal in whole graph

Questions:

I What properties enable recovery? Need to define frequency

I How to sample? No obvious regular sampling

I How to reconstruct? Filtering is needed
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Results: Real Datasets
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I USPS: handwritten digits

I xi = 16× 16 image

I number of classes = 10

I K -NN graph with K = 10

I wij = exp

(
−
‖xi−xj‖
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I ISOLET: spoken letters

I xi ∈ R617 speech features.

I number of classes = 26

I K -NN graph with K = 10

I wij = exp

(
−
‖xi−xj‖
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2σ2

)
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I Newsgroups: documents

I xi ∈ R3000 tf-idf of words

I number of classes = 10

I K -NN graph with K = 10

I wij =
x>i xj
‖xi‖‖xj‖



Assumptions

I Given data matrix X = [x1, · · · , xN ] ∈ Rn×N .

I The k-th row of X (k-th variable) is attached to k-th vertex of the graph.

I Each xi is a graph signal in an unknown graph.

I Sensor network: each vertex is a sensor, signal is a measurement/time
series

I Data model: attractive Gaussian Markov Random Field (a-GMRF) ⇔
Gaussian with a Generalized Laplacian (GL) for precision matrix.

I Q = P + L with P diagonal (self loop matrix) and L a combinatorial
Laplacian.

I Q = (qij) and qij ≤ 0 for all i 6= j

I Graph estimation: Max. Likelihood under aGMRF model.

Use block coordinate descent to solve

min
Q is GL

− log det(Q) + tr(QS),

with S = 1
N

XXT .



Experiment: Texture graph
We consider wood textures from Brodatz dataset, with 0 and with 60 degree
rotation. For each texture of Brodatz dataset, take 8× 8 blocks, compute their
covariance matrix S and solve GL estimation rho = 0.

2.7539e−05 1

wood060

0.053489 1

Texture graphs using our GL estimation (only off diagonal elements of Q). The graphs
have |E | = 130 and |E | = 117 edges respectively

.
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Discussion

I Research Question (Twitter Edition):

I GSP 4 CPS + IOT @USC-CCI ?

I Systems are large and irregular in space/time

I Sampling and interpolation (sensors)
I Variable topology communication networks
I Data reduction to reduce complexity; multiresolution representations
I Control and optimization of large scale systems
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