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A human being is a part of a whole, called by us
“universe”, a part limited in time and space.
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Research Synopsis: Machine Learning Models

Developing scalable and effective solutions by leveraging recent progresses
across disciplines

Yan Liu (USC) Mining from Large-scale Time Series Data April 14, 2017 3 / 25



Research Synopsis: Applications

• Doctor AI - Healthcare Analytics

• Social Network Analysis

He-et-al. HawkesTopic ICML-2015

Result:-ArXiv

16/17

• Computational sustainability
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Google Alpha Go Beats Human
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After AlphaGo, what’s next for AI?

Googles DeepMind AI group unveils health care ambitions

http://www.theverge.com/2016/3/14/11219258/google-deepmind-alphago-go-challenge-ai-future
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Properties of Health Care Data

How are health care data different from the data from existing applications
of deep learning?

• Privacy, privacy!

• Heterogeneity

• Lots lots of missing data

• Big small data

• Worst of all: doctors do not
believe anything they cannot
understand no matter how cool
and how deep they are!!

Example 1:

Example 2:
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Recurrent Neural Networks for Time Series Data

Our Contributions [KDD 2015, AMIA 2015, 2016, arXiv 2016, ICLR 2017]

• Multi-modal Deep Neural Networks

• Handling Missing Data in DNN

• Big Small Data Solution via DNN

• Interpretation of DNN
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Explainable Artificial Intelligence: Mimic learning
Framework
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Main idea:

• Use Gradient Boosting Trees (GBT) to mimic the performance of deep
learning models

Benefits:

• Good performance from complex deep networks – Mimic model keeps it

• Easy overfitting in original decision tree methods – Mimic model avoids it

• Interpretations are hard to get in original models – Mimic model provides it
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Experiment Result
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Experiment Result
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Diffusion Analysis

• Adoption of innovation: new treatment, new technology

• Marketing: word of mouth effect, viral marketing

• Public opinion surveillance: detection of rumors

• Media analysis: modeling news dynamics
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Network Inference

Network Inference: inferring the latent diffusion network from observed
cascades

Our contribution [ICML 2015, NIPS 2016, WSDM submission]
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Hawkes-Topic Models: Joint Inference of Diffusion
Networks and Topics

1 Generate all the events and the event times via the Multivariate
Hawkes Process

2 For each topic k: draw βk ∼ Dir(α).
3 For each event e of node v:

1 If e is a spontaneous event: ηe ∼ N(αv, σ
2I). Otherwise

ηe ∼ N(ηparent[e], σ
2I).

2 For each word n:
ze,n ∼ Discrete(π(ηe)), we,n ∼ Discrete(βze,n).
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Experiment Results: EventRegistry

He-et-al. HawkesTopic ICML-2015

Result:-EventRegistry

Hawkes Hawkes?LDA Hawkes?CTM HTM

Component"1 0.622 0.669 0.673 0.697
Component"2 0.670 0.704 0.716 0.730
Component"3 0.666 0.665 0.669 0.700

LDA CTM HTM

Component"1 P42945 P42458 ?42325
Component"2 P22558 P22181 P22164

Component"3 P17574 P17574 P17571

Network&Inference&accuracy:&10% improvement&

Topic&modeling&accuracy:&

13/17
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Experiment Results: EventRegistry

He-et-al. HawkesTopic ICML-2015

Result:-EventRegistry

14/17Early bird report agency : sunherald.com, miamiherald.com and in.reuters.com
News gathering and re-distribution agency : www.reuters.com
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Research Synopsis: Applications
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Spatiotemporal Data Analysis [NIPS 2104 Spotlight Presentation,

ICML 2015, ICML 2016]

Two key principles in designing spatial-temporal models

Local smoothness: features in the
same neighborhood share similar
value

Global latent structure: the data
lie on a lower dimensional latent
structure
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Tensor Representation for Spatial Temporal Data

Spatial temporal data can naturally be represented as tensors
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Simple solutions based on tensor formulation:

• Local smoothness can be achieved by Laplacian regularizer

• Global latent structures can be achieved by low-rank constraint
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Application I: Cokriging

Task description Jointly predicting the value of multiple features at
unknown locations by taking advantage of the observations from known
locations.

Given the complete data X ∈ RP×T×M and partial observations at a
subset of locations indexed by Ω ⊂ {1, . . . , P}, we need to estimate
W ∈ RP×T×M so that WΩ = XΩ.

Our formulation

Ŵ = argmin
W

{ Loss term︷ ︸︸ ︷
‖WΩ −XΩ‖2F +

Local consistency︷ ︸︸ ︷
µ

M∑
m=1

tr(W>:,:,mLW:,:,m)

}
subject to rank(W) ≤ ρ︸ ︷︷ ︸

Global consistency

.
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Experiments on Climate Datasets

Cokriging
Dataset Tensor-F Tensor-O ADMM Simple MTGP

USHCN 0.7594 0.7210 0.8051 0.8760 1.0007
CCDS 0.5555 0.4532 0.8292 0.7634 1.0296

Forecasting
Dataset Tensor-F Tensor-O Tucker ADMM OrthoNL Trace MTLl1 MTLdirty

USHCN 0.9171 0.9069 0.8975 0.9227 0.9175 0.9273 0.9528 0.9735
CCDS 0.8810 0.8325 0.9438 0.8448 0.8555 0.8632 0.9105 1.0950

Map of most predictive regions
analyzed by the greedy algorithm
using CCDS dataset.
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Experiments on Scalability

Running time (in seconds) for cokriging and forecasting

Cokriging Forecasting

Dataset USHCN CCDS FSQ USHCN CCDS FSQ

Tensor-O 93.03 16.98 91.51 75.47 21.38 37.70
ADMM 791.25 320.77 720.40 235.73 45.62 33.83
MTGP ∞

Other Development

• Online prediction (ICML 2015)

• Memory efficient prediction (ICML 2016)

• Connections to Gaussian Processes (Upcoming)
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Thank you!

For more information: USC Melady Group
http://www-bcf.usc.edu/~liu32/melady.html
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