Conquering the Complexity of Time: Machine Learning for Big Time Series Data

Yan Liu

Computer Science Department University of Southern California

Mini-Workshop on Theoretical Foundations of Cyber-Physical Systems

April 14, 2017

A human being is a part of a whole, called by us "universe", a part limited in time and space.

Research Synopsis: Machine Learning Models

Developing scalable and effective solutions by leveraging recent progresses across disciplines

Functional data analysis

Point process model

Low rank tensor analysis

Deep neural networks

Life cycle model

Research Synopsis: Applications

• Doctor AI - Healthcare Analytics

• Social Network Analysis

• Computational sustainability

Google Alpha Go Beats Human

After AlphaGo, what's next for Al?

Googles DeepMind AI group unveils health care ambitions

http://www.theverge.com/2016/3/14/11219258/google-deepmind-alphago-go-challenge-ai-future

Yan Liu (USC)

Properties of Health Care Data

How are health care data different from the data from existing applications of deep learning?

- Privacy, privacy!
- Heterogeneity
- Lots lots of missing data
- Big small data
- Worst of all: doctors do not believe anything they cannot understand no matter how cool and how deep they are!!

Example 1:

												_														
	100	1.00	1.00	1.00	1.144				1.00		1000	1.00	1.00		1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	
1044	TOUR	3WC	100	DATE:	1361	310	All	June 1	OW	INC	INC	HOC:	1000	000	3286	3000	Direct.	Max.	XOX.			Section.	mer.	MAY.	MARKS.	
					100																					
10.001					100	12																				
			24			0																0				
			× .		10	- 15														- 21				1100.00		
14					30	24	3.0075																			
			× .			1.5	1.650															(
						. 61																				
			24			- P	1000																			
			24.11		144	1.0	100.0													12.000						
							1000																			
			×																							
			×		×0.																					
			24.1			14																				
											1.060							1.1404					3,940		1.048.0	
10.140			×								1.000	100	1.440.00		1.000			1.000							0.000	
			×			×																				
10.000			. M				1.00.0	1000			1.000	/ A.B.	10.4													
			R			- 24																				
	1100		ж		× .									1.000	1.000	1.8.00	0.000									
			×		22	10																				
											1.000		1.000													
						- 64 -																				
			×																							
						- 24																				
			×																							
					100	- 25-																				
					12.0	- 2-																				
						_																				

Example 2:

Recurrent Neural Networks for Time Series Data

Our Contributions [KDD 2015, AMIA 2015, 2016, arXiv 2016, ICLR 2017]

- Multi-modal Deep Neural Networks
- Handling Missing Data in DNN
- Big Small Data Solution via DNN
- Interpretation of DNN

Explainable Artificial Intelligence: Mimic learning Framework

Main idea:

• Use Gradient Boosting Trees (GBT) to mimic the performance of deep learning models

Benefits:

- Good performance from complex deep networks Mimic model keeps it
- Easy overfitting in original decision tree methods Mimic model avoids it
- Interpretations are hard to get in original models Mimic model provides it

Experiment Result

Prediction on patients with respiratory disease

	Mort	ality	Ventilator	Free Days
	AUROC	AUPRC	AUROC	AUPRC
Simple Model	0.7196	0.4171	0.7592	0.8142
Deep Model	0.7813	0.4874	0.7896	0.8397
Mimic Model	0.7898	0.4766	0.7889	0.8324

AUROC across 20 ICD-9 diagnosis prediction tasks

Experiment Result

Important Features for ICD-9 diagnosis prediction tasks

Blood System Diagnosis	HemoglobinPlatelet countRed cell distribution width
Respiratory System	 Mean corpuscular hemoglobin
Diagnosis	concentration Partial pressure of oxygen

How features are evaluated in our model

Left: PH value in blood

• A very narrow normal range around 7.35-7.45.

Right: change of PaO2/FiO2 ratio

- Normal range: 400-500 mmHg;
- < 200: necessary for the diagnosis of respiratory distress syndrome.</p>

Experiment Result

% and color: class distribution; S: # of samples; V: prediction value

Genitourinary system diagnosis

- Urea nitrogen
- Creatinine

Ventilator free days

- Lung injury score
- Oxygenation index
- Change of PaO2/FiO2 ratio

Research Synopsis: Applications

• Doctor AI - Healthcare Analytics

• Social Network Analysis

• Computational sustainability

Diffusion Analysis

- Adoption of innovation: new treatment, new technology
- Marketing: word of mouth effect, viral marketing
- Public opinion surveillance: detection of rumors
- Media analysis: modeling news dynamics

Network Inference

Network Inference: inferring the latent diffusion network from observed cascades

Our contribution [ICML 2015, NIPS 2016, WSDM submission]

Hawkes-Topic Models: Joint Inference of Diffusion Networks and Topics

- Generate all the events and the event times via the Multivariate Hawkes Process
- **2** For each topic k: draw $\beta_k \sim Dir(\alpha)$.
- **3** For each event e of node v:
 - **1** If e is a spontaneous event: $\eta_e \sim N(\alpha_v, \sigma^2 I)$. Otherwise $\eta_e \sim N(\eta_{\text{parent[e]}}, \sigma^2 I)$.
 - **2** For each word n:

 $z_{e,n} \sim \mathsf{Discrete}(\pi(\eta_e)), w_{e,n} \sim \mathsf{Discrete}(\beta_{z_{e,n}}).$

Experiment Results: EventRegistry

Network Inference accuracy: 10% improvement

	Hawkes	Hawkes-LDA	Hawkes-CTM	HTM
Component 1	0.622	0.669	0.673	0.697
Component 2	0.670	0.704	0.716	0.730
Component 3	0.666	0.665	0.669	0.700

Topic modeling accuracy:

	LDA	СТМ	HTM
Component 1	-42945	-42458	-42325
Component 2	-22558	-22181	-22164
Component 3	-17574	-17574	-17571

Experiment Results: EventRegistry

Early bird report agency: sunherald.com, miamiherald.com and in.reuters.com *News gathering and re-distribution agency*: www.reuters.com

Research Synopsis: Applications

• Doctor AI - Healthcare Analytics

• Social Network Analysis

• Computational sustainability

Spatiotemporal Data Analysis [NIPS 2104 Spotlight Presentation, ICML 2015, ICML 2016]

Two key principles in designing spatial-temporal models

Local smoothness: features in the same neighborhood share similar value

Spatiotemporal Data Analysis [NIPS 2104 Spotlight Presentation, ICML 2015, ICML 2016]

Two key principles in designing spatial-temporal models

Local smoothness: features in the same neighborhood share similar value

Global latent structure: the data lie on a lower dimensional latent structure

Tensor Representation for Spatial Temporal Data

Spatial temporal data can naturally be represented as tensors

Tensor Representation for Spatial Temporal Data

Spatial temporal data can naturally be represented as tensors

Simple solutions based on tensor formulation:

- Local smoothness can be achieved by Laplacian regularizer
- Global latent structures can be achieved by low-rank constraint

Application I: Cokriging

Task description Jointly predicting the value of multiple features at unknown locations by taking advantage of the observations from known locations.

Application I: Cokriging

Task description Jointly predicting the value of multiple features at unknown locations by taking advantage of the observations from known locations.

Given the complete data $\mathcal{X} \in \mathbb{R}^{P \times T \times M}$ and partial observations at a subset of locations indexed by $\Omega \subset \{1, \ldots, P\}$, we need to estimate $\mathcal{W} \in \mathbb{R}^{P \times T \times M}$ so that $\mathcal{W}_{\Omega} = \mathcal{X}_{\Omega}$.

Application I: Cokriging

Task description Jointly predicting the value of multiple features at unknown locations by taking advantage of the observations from known locations.

Given the complete data $\mathcal{X} \in \mathbb{R}^{P \times T \times M}$ and partial observations at a subset of locations indexed by $\Omega \subset \{1, \ldots, P\}$, we need to estimate $\mathcal{W} \in \mathbb{R}^{P \times T \times M}$ so that $\mathcal{W}_{\Omega} = \mathcal{X}_{\Omega}$.

Our formulation

Experiments on Climate Datasets

	Cokriging										
Dataset	TENSOR-F	TENSOR-O	ADMM	Simple	MTGP						
USHCN	0.7594	0.7210	0.8051	0.8760	1.0007						
CCDS	0.5555	0.4532	0.8292	0.7634	1.0296						

Forecasting

Dataset	TENSOR-F	TENSOR-O	Tucker	ADMM	OrthoNL	TRACE	MTL_{l1}	MTL_{dir}
USHCN	0.9171	0.9069	0.8975	0.9227	0.9175	0.9273	0.9528	0.9735
CCDS	0.8810	0.8325	0.9438	0.8448	0.8555	0.8632	0.9105	1.0950

Experiments on Climate Datasets

	Cokriging										
Dataset	TENSOR-F	TENSOR-O	ADMM	Simple	MTGP						
USHCN	0.7594	0.7210	0.8051	0.8760	1.0007						
CCDS	0.5555	0.4532	0.8292	0.7634	1.0296						

	Forecasting										
Dataset	TENSOR-F	TENSOR-O	Tucker	ADMM	OrthoNL	TRACE	MTL_{l1}	MTL_{dir}			
USHCN	0.9171	0.9069	0.8975	0.9227	0.9175	0.9273	0.9528	0.9735			
CCDS	0.8810	0.8325	0.9438	0.8448	0.8555	0.8632	0.9105	1.0950			

Map of most predictive regions analyzed by the greedy algorithm using CCDS dataset.

Experiments on Scalability

	C	OKRIGING		Forecasting			
DATASET	USHCN	CCDS	FSQ	USHCN	CCDS	FSQ	
TENSOR-O	93.03	16.98	91.51	75.47	21.38	37.70	
ADMM	791.25	320.77	720.40	235.73	45.62	33.83	
MTGP			\propto	,)			

Running time (in seconds) for cokriging and forecasting

Other Development

- Online prediction (ICML 2015)
- Memory efficient prediction (ICML 2016)
- Connections to Gaussian Processes (Upcoming)

Thank you!

For more information: USC Melady Group http://www-bcf.usc.edu/~liu32/melady.html