

Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic

Ajitesh Srivastava, Viktor Prasanna Data Science Lab

University of Southern California

Data-driven Research My work at Data Science Lab dslab.usc.edu Led by Prof. Viktor K. Prasanna		Algorithms Data Mining
Abstract Mathematical formulation, provably correct solutions	Experimental Justified intuition for methods from assumptions, experimentally verifiable solution	Real World Justified intuition from observations/domain experts, practical, deployable solution
GraphSAINT: State-of- the-art Embedding	Image classification	Target Challenge: Predicting what shoppers will buy
Influence Computation, Maximization,	Load forecasting	Violence reduction among homeless
Competing Cascades	Crime forecasting	DARPA Challenge Chikungunya
Restricting FakeNews	ML-driven prefetcher	Epidemic Forecasting
High-throughput FF solutions	GA ML-driven compiler	COVID-19: Forecasts, Resource allocation, Restarting the economy,

3

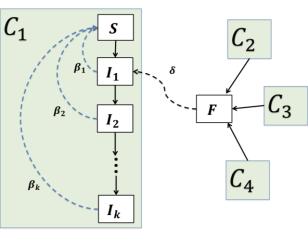
Heterogeneous infection rate model with human mobility

level predictions. Weekly over 8 months, 55 countries

CHIKV epidemic: Country-

One of 10 winners of DARPA Grand Challenge 2015 for predicting CHIKV epidemic

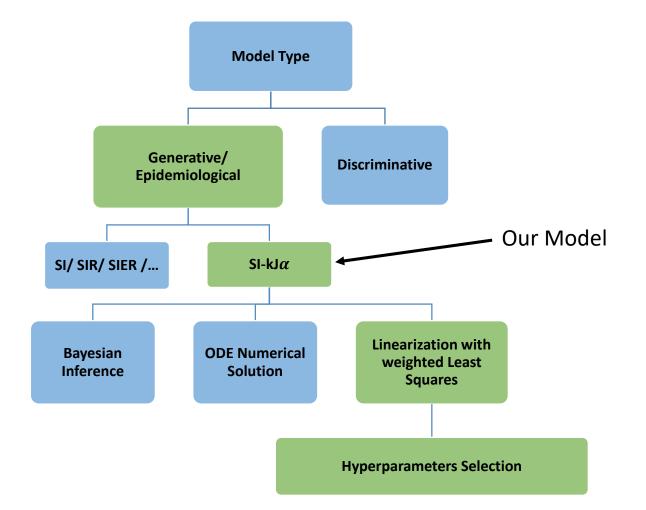
DARPA Grand Challenge – CHIKV (2014-2015)



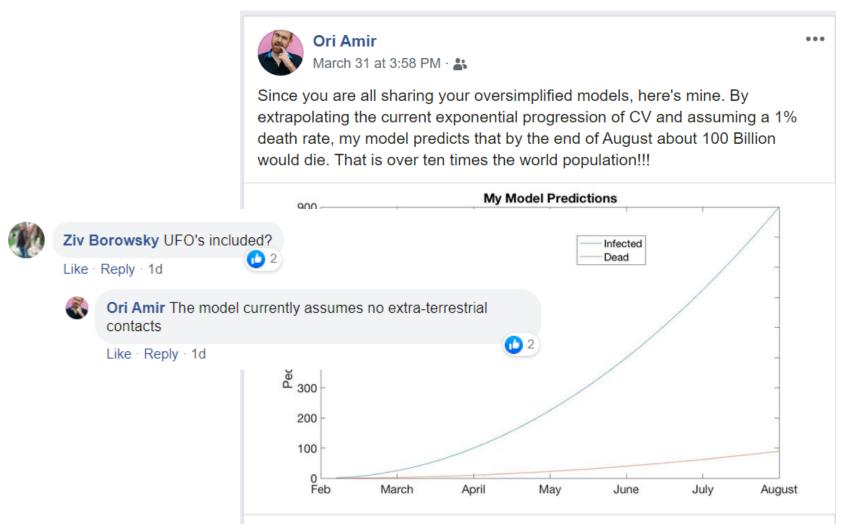
Why Forecast?

- Preparedness and resource management needs state/county/city level predictions:
 - How many masks, testing kits, beds are needed tomorrow/next week at a given hospital
 - How to distribute state/country resources across all the hospitals in a state/country
- How do we come out of "stay-at-home" order?
 - Should some venues remain closed and some open, initially?
- Need accurate forecasts and simulations of future scenarios

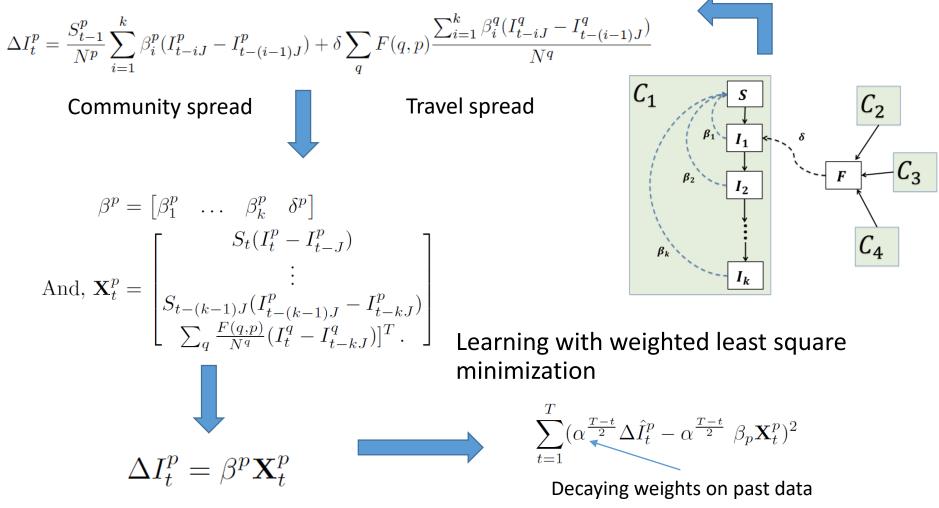
Modeling Choices



Forecasting is Difficult



$SI-kJ\alpha\,$ - Heterogeneous Infection Rate with Human Mobility



Results: Short-term Predictions (1)

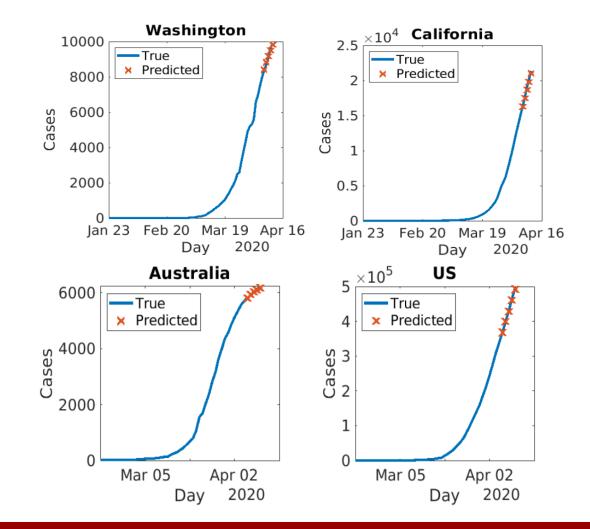
• Using data by April 10th (not including travel)

	Method	RMSE (US)	MAPE (US)	RMSE (Global)	MAPE (Global)
Adaptive 🥂	SI-kJ α (variable)	333.3	6.82%	462.6	13.64%
	SI-kJ α (fixed)	342.05	6.58%	456.0	11.22 %
Single curve	SI-kJ α (ensemble)	316.3	5.93 %	355.9	11.37%
fitting	Gen-SEIR	2106.4	14.31%	7471.2^{*}	$41.06\%^{*}$

• Using data by March 21st including travel data

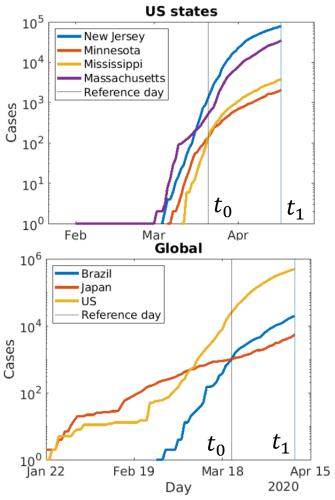
		US		Global	
	Method	RMSE	MAPE	RMSE	MAPE
Travel data improved the models	travel, variable without travel, variable travel, fixed without travel, fixed	166.7 🗖	19.93% 18.51% 25.08% 19.52%	348.2 ■ 242.6	21.353% 23.15% 19.50 % 21.42%

Results: Short-term Predictions (2)

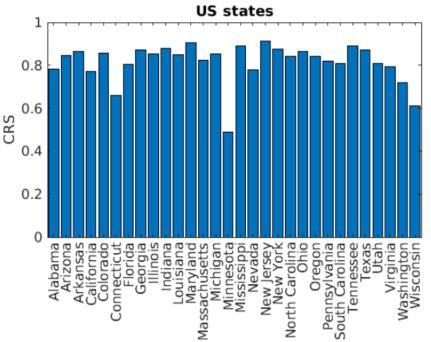


Measuring the Present, using the Past, through Predictions

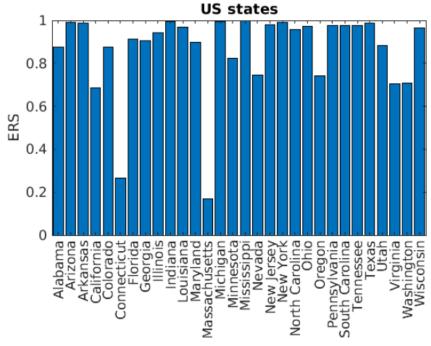
- Compare
 - Reference day t_0 in the past– model parameters (M_0) , forecast number of cases to the present $(I_0 \rightarrow^{M_0} I_1)$
 - Present day t_1 to measure model parameters (M_1) , actual confirmed cases on the present day (\hat{I}_1)
- We propose
 - **Contact Reduction Score (CRS):** A measure of reduction in transmission (M_0, M_1)
 - Depends only on model parameters
 - Epidemic Reduction Score (ERS): A measure of reduction in the number of cases
 - Depends on number of infections (\hat{I}_1 , I_1)



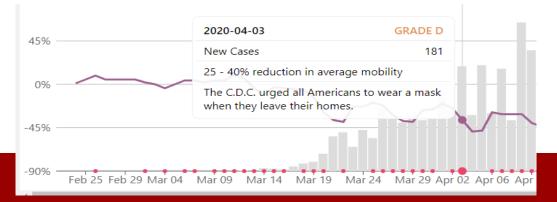
CRS and ERS for US States (March 21st-April 10th)



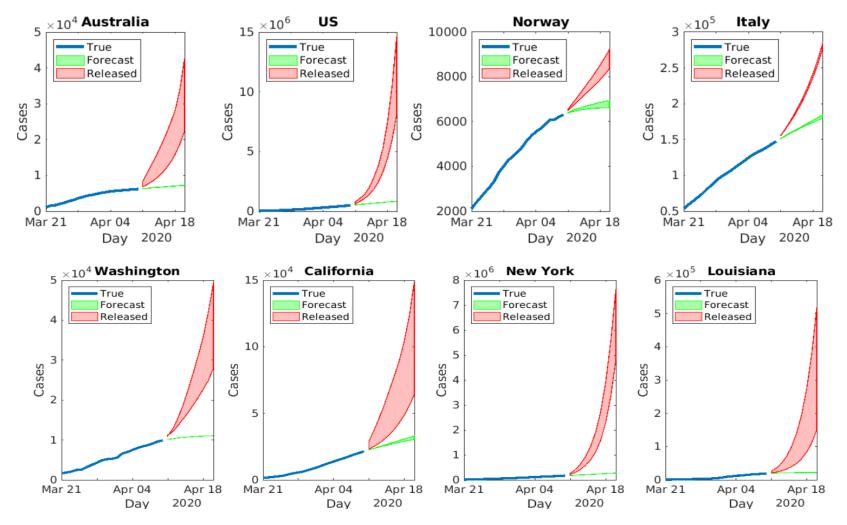
Best CRS: New Jersey, Worst CRS: Minnesota



Best ERS: Mississippi, Worst ERS: Massachusetts



Forecasts and "What-if"



Forecasting Web Interface

https://jaminche.github.io/COVID-19/

Conclusions

- Accurate short-term country and state-level forecasts
- Good hyperparameter selection is critical
- Models should evolve with data
- Ensemble approach likely to be the best approach
 - Consider several models instead of one
- Aggregate mobility reduction may not be the best way to rate the response

Next Steps

- County/city/neighborhood level predictions
- Hybrid hyperparameter/parameter learning scheme
 - Current approach: Each has its own or everyone uses the same hyperparameters
 - Clusters of regions share hyperparameters and even parameters: Consider similar regions when data for given region is not enough
- Incorporating Unreported Cases

- Resource allocation algorithms
 - Using the forecast to formulate and solve resource management problems [Bistra Dilkina, ...]
- Network diffusion/immunization
 - How to limit mobility so the epidemic is contained [Kristina Lerman, ...]
- GraphSAINT (ICLR 2020): State-of-the-art Graph Embedding
 - Knowledge base for COVID-19 [Pedro Szekely, Jay Pujara]
 - Identifying candidate vaccines; effect on tissues [Barabasi Lab]

Acknowledgments

- NSF RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
- Initial Sprint
 - Frost Tianjian Xu (Sophomore, CS): Dataset preparation
 - Jamin Chen (Senior, CS): integrating our methods into a web-based visualization
 - Prathik Rao (Junior, CE) and Kangmin Tan (Junior, CS): Implementing and evaluating various ML training approaches

Data Science Lab led by Prof. Viktor K. Prasanna

Questions?

dslab.usc.edu

ajiteshs@usc.edu prasanna@usc.edu

